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ABSTRACT 

The expansion of enthusiasm for utilizing online life as a hotspot for research has spurred handling the test of 

consequently geo locating tweets, given the absence of express area data in the lion's share of tweets. As 

opposed to much past work that has concentrated on area arrangement of tweets confined to a particular nation, 

here we attempt the assignment in a more extensive setting by arranging worldwide tweets at the nation level, 

which is so far unexplored in a constant situation. we propose a framework enabling Online Social Network 

clients to have an immediate control on the messages posted on their dividers. This is accomplished through an 

adaptable standard based framework, that enables clients to alter the separating criteria to be connected to their 

dividers, and a Machine Learning based delicate classifier consequently naming messages in help of substance 

based sifting. 
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I.INTRODUCTION:- 

Social media are increasingly being used in the 

scientific community as a key source of data to 

help understand diverse natural and social 

phenomena, and this has prompted the 

development of a wide range of computational data 

mining tools that can extract knowledge from 

social media for both post-hoc and real time 

analysis. Thanks to the availability of a public API 

that enables the cost-free collection of a significant 

amount of data, Twitter has become a leading data 

source for such studies [53]. Having Twitteras a 

new kind of data source, researchers have 

lookedinto the development of tools for real-time 

trend analytics [32], [56] or early detection of 

newsworthy events [51], as well as into analytical 

approaches for understanding the sentiment 

expressed by users towards a target [24], [26], [52], 

or public opinion on a specific topic [5]. However, 

Twitterdata lacks reliable demographic details that 

would enable a representative sample of users to be 

collected and/or afocus on a specific user subgroup 

[36], or other  specific applications such as helping 

establish the trustworthiness of information posted 

[34]. Automated inference of social media 

demographics would be useful, among others, to 

broaden demographically aware social media 

analyses that are conducted through surveys [16]. 

One of the missing demographic details is a user’s 

country of origin, which we study here. The only 

option then for the researcher is to try to infer such 

demographic  characteristics before attempting the  

intended analysis. This has motivated a growing 

body of research in recent years looking at different 

ways of determining automatically the user’s 

country of origin and/or – as a proxy for the former 

– the location from which tweets have been posted 

[1]. Most of the previous research in inferring tweet 

Geo location has classified tweets by location 

within a limited geographical area or country; these 

cannot be applieddirectly to an unfiltered stream 

where tweets from any location or country will be 

observed. The few cases that have dealt with a 

global collection of tweets have used an extensive 

set of features that cannot realistically be extracted 

in a real-time, streaming context (e.g., user 

tweeting history or social networks) [14], and have 

been limited to a selected set of global cities as 

well as to English tweets. This means they use 

ground truth labels to pre-filter tweets originating 

from other regions and/or written in languages 

other than English. The classifier built on this pre-

filtered dataset may not be applicable to a Twitter 

stream where every tweet needs to be geo located. 

An ability to classify tweets by location in real-

time is crucial for applications exploiting social 

media updates as social sensors that enable tracking 

topics and learning about location-specific trending 

topics, emerging events and breaking news. 

Specific applications of a real-time, country-level 

tweet geolocation system include country-specific 

trending topic detection or tracking senti- ment 

towards a topic broken down by country. To the 

best of our knowledge, our work is the first to deal 
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with global tweets in any language, using only 

those features present within the content of a tweet 

and its associated metadata. We also complement 

previous work by investigating the extent to which 

a classifier trained on historical tweets can be used 

effectively on newly harvested tweets. Motivated 

by the need to develop an application to identify 

the trending topics within a specific country1, here 

we document the development of a classifier that 

can geo locate tweets by country of origin in real-

time. Given that within this scenario it is not 

feasible to collect additional data to that readily 

available from the Twitter stream [14], we explore 

the usefulness of eight tweet-inherent features, all 

of which are readily available from a tweet object 

as retrieved from the Twitter API, for determining 

its geolocation.We perform classification using 

each of the features alone, but also in feature 

combinations. We explore the ability to perform 

the classification on as many as 217 countries, or in 

a reduced subset of the top 25 countries, as judged 

by tweet volume. The use of two datasets, collected 

in October 2014 and October 2015, gives 

additional insight into whether historical Twitter 

data can be used to classify new instances of 

tweets. These two datasets with over 5 million 

country coded tweets are publicly available. Our 

methodology enables us to perform a thorough 

analysis of tweet geo location, revealing insights 

into the best approaches for an accurate country-

level location classifier for tweets. We find that the 

use of a single feature like content, which is the 

most commonly used feature in previous work, 

does not suffice for an accurate classification of 

users by country and that the combination of 

multiple features leads to substantial improvement, 

outperforming the state-of-the-art real-time tweet 

geo location classifier; this improvement is 

particularly manifest when using metadata like the 

user’s self-reported location as well as the user’s 

real name. We also perform a per-country analysis 

for the top 25 countries in terms of tweet volume, 

exploring how different features lead to optimal 

classification for different countries, as well as 

discussing limitations  dealing with some of the 

most challenging countries. We show that country-

level classification of an unfiltered Twitter stream 

is challenging. It requires careful design of a 

classifier tha uses an appropriate combination of 

features. Our results at the country level are 

promising enough in the case of numerous 

countries, encouraging further research into finer 

grained geo location of global tweets. Cases where 

country level geo location is more challenging 

include English and Spanish speaking countries, 

which are harder to distinguish due to their 

numerous commonalities. Still, our experiment 

show that we can achieve F1 scores above 80% in 

many of these cases given the choice of an 

appropriate combination of features, as well as an 

overall performance above 80% in terms of both 

micro-accuracy and macro-accuracy for the top 25 

countries. 

 

II. Literature Survey:- 

1)  Securing personal health records in OSN 

Patient-centric and fine-grained data access 

control in multi-owner settings  

AUTHORS:  M. Li, S. Yu, K. Ren, and W. Lou 

Online personal health record (PHR) enables 

patients to manage their own medical records in a 

centralized way, which greatly facilitates the 

storage, access and sharing of personal health data. 

With the emergence of cloud computing, it is 

attractive for the PHR service providers to shift 

their PHR applications and storage into the cloud, 

in order to enjoy the elastic resources and reduce 

the operational cost. However, by storing PHRs in 

the cloud, the patients lose physical control to their 

personal health data, which makes it necessary for 

each patient to encrypt her PHR data before 

uploading to the cloud servers. Under encryption, it 

is challenging to achieve fine-grained access 

control to PHR data in a scalable and efficient way. 

For each patient, the PHR data should be encrypted 

so that it is scalable with the number of users 

having access. Also, since there are multiple 

owners (patients) in a PHR system and every 

owner would encrypt her PHR files using a 

different set of cryptographic keys, it is important 

to reduce the key distribution complexity in such 

multi-owner settings. Existing cryptographic 

enforced access control schemes are mostly 

designed for the single-owner scenarios. 

 

In this paper, we propose a novel framework for 

access control to PHRs within cloud computing 

environment. To enable fine-grained and scalable 

access control for PHRs, we leverage attribute 

based encryption (ABE) techniques to encrypt each 

patient’s PHR data. To reduce the key distribution 

complexity, we divide the system into multiple 

security domains, where each domain manages 

only a subset of the users. In this way, each patient 

has full control over her own privacy, and the key 

management complexity is reduced dramatically. 

Our proposed scheme is also flexible, in that it 

supports efficient and on-demand revocation of 

user access rights, and break-glass access under 

emergency scenarios. 

2) Securing the Health Records in OSN 

AUTHORS: H. L¨ohr, A.-R. Sadeghi, and M. 

Winandy 

Modern information technology is increasingly 

used in healthcare with the goal to improve and 

enhance medical services and to reduce costs. In 

this context, the outsourcing of computation and 

storage resources to general IT providers (cloud 

computing) has become very appealing. E-health 

clouds offer new possibilities, such as easy and 

ubiquitous access to medical data, and 

opportunities for new business models. However, 

they also bear new risks and raise challenges with 

respect to security and privacy aspects. 

In this paper, we point out several shortcomings of 

current e-health solutions and standards, 

particularly they do not address the client platform  
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security, which is a crucial aspect for the overall 

security of e-health systems. To fill this gap, we 

present a security architecture for establishing 

privacy domains in e-health infrastructures. Our 

solution provides client platform security and 

appropriately combines this with network security 

concepts. Moreover, we discuss further open 

problems and research challenges on security, 

privacy and usability of e-health cloud systems. 

 
3)  Authorized private keyword search over 

encrypted personal health records in OSN 

AUTHORS:  M. Li, S. Yu, N. Cao, and W. Lou 

In Online Social Network  clients usually outsource 

their data to the cloud storage servers to reduce the 

management costs. While those data may contain 

sensitive personal information, the cloud servers 

cannot be fully trusted in protecting them. 

Encryption is a promising way to protect the 

confidentiality of the outsourced data, but it also 

introduces much difficulty to performing effective 

searches over encrypted information. Most existing 

works do not support efficient searches with 

complex query conditions, and care needs to be 

taken when using them because of the potential 

privacy leakages about the data owners to the data 

users or the cloud server. In this paper, using on 

line Personal Health Record (PHR) as a case study, 

we first show the necessity of search capability 

authorization that reduces the privacy exposure 

resulting from the search results, and establish a 

scalable framework for Authorized Private 

Keyword Search (APKS) over encrypted cloud 

data. We then propose two novel solutions for 

APKS based on a recent cryptographic primitive, 

Hierarchical Predicate Encryption (HPE). Our 

solutions enable efficient multi-dimensional 

keyword searches with range query, allow 

delegation and revocation of search capabilities. 

Moreover, we enhance the query privacy which 

hides users' query keywords against the server. We 

implement our scheme on a modern workstation, 

and experimental results demonstrate its suitability 

for practical usage. 

4)  Public standards and patients’ control: how 

to keep electronic medical records accessible but 

private 
AUTHORS:  K. D. Mandl, P. Szolovits, and I. S. 

Kohane 

A patient's medical records are generally 

fragmented across multiple treatment sites, posing 

an obstacle to clinical care, research, and public 

health efforts.1 Electronic medical records and the 

internet provide a technical infrastructure on which 

to build longitudinal medical records that can be 

integrated across sites of care. Choices about the 

structure and ownership of these records will have 

profound impact on the accessibility and privacy of 

patient information. Already, alarming trends are 

apparent as proprietary online medical record 

systems are developed and deployed. The 

technology promising to unify the currently 

disparate pieces of a patient's medical record may 

actually threaten the accessibility of the 

information and compromise patients' privacy. In 

this article we propose two doctrines and six 

desirable characteristics to guide the development 

of online medical record systems. We describe how 

such systems could be developed and used 

clinically. 

5) Patient controlled encryption: ensuring 

privacy of electronic medical records 

AUTHORS: J. Benaloh, M. Chase, E. Horvitz, and 

K. Lauter 

We explore the challenge of preserving patients ’ 

privacy in electronic health record systems. We 

argue that security in such systems should be 

enforced via encryption as well as access control. 

Furthermore, we argue for approaches that enable 

patients to generate and store encryption keys, so 

that the patients ’ privacy is protected should the 

host data center be compromised. The standard 

argument against such an approach is that 

encryption would interfere with the functionality of 

the system. However, we show that we can build an 

efficient system that allows patients both to share 

partial access rights with others, and to perform 

searches over their records. We formalize the 

requirements of a Patient Controlled Encryption 

scheme, and give several instantiations, based on 

existing cryptographic primitives and protocols, 

each achieving a different set of properties. 

 
III.ENHANCEMENT: 

One central issue in today On-line Social Networks 

(OSNs) is to enable clients to control the messages 

posted alone private space to stay away from that 

undesirable substance is shown. Up to now OSNs 

give little help to this necessity. Users are sharing 

some location from there user walls that will help 

to find the locations of different user and also helps 

this project to advice the friends and neighbours 

about the different places to visit. 

http://www.bmj.com/content/322/7281/283#ref-1
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IV. Future Enhancement and Conclusion  
Later on we intend to test elective cost-touchy 

learning ways to deal with the one utilized here, 

centering particularly  on gathering of more 

information for under-spoke to nations, so the 

classifier can be additionally enhanced for every 

one of the nations. Moreover, we intend to 

investigate more complex methodologies for 

substance examination, e.g. discovery of points in 

substance (e.g. do a few nations speak more about 

football than others?), and also semantic treatment 

of the content. We likewise intend to create better 

grained classifiers that take the yield of the nation 

level classifier as info. 
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